{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Creating Columns as Functions of Existing Columns"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Getting ready\n",
"\n",
"Import `pandas` and `numpy` and create a `DataFrame` to work with"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" A | \n",
" B | \n",
" C | \n",
"
\n",
" \n",
" \n",
" \n",
" 2020-01-01 | \n",
" 0.683402 | \n",
" -0.530933 | \n",
" 2.211594 | \n",
"
\n",
" \n",
" 2020-01-02 | \n",
" 0.492285 | \n",
" 0.422495 | \n",
" 0.047873 | \n",
"
\n",
" \n",
" 2020-01-03 | \n",
" -0.287670 | \n",
" -1.712541 | \n",
" 0.665600 | \n",
"
\n",
" \n",
" 2020-01-04 | \n",
" -1.206087 | \n",
" -0.479746 | \n",
" 0.112255 | \n",
"
\n",
" \n",
" 2020-01-05 | \n",
" 0.384278 | \n",
" 0.314534 | \n",
" -1.529952 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" A B C\n",
"2020-01-01 0.683402 -0.530933 2.211594\n",
"2020-01-02 0.492285 0.422495 0.047873\n",
"2020-01-03 -0.287670 -1.712541 0.665600\n",
"2020-01-04 -1.206087 -0.479746 0.112255\n",
"2020-01-05 0.384278 0.314534 -1.529952"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dates = pd.date_range('1/1/2020', periods=8)\n",
"data = np.random.randn(8, 3)\n",
"df = pd.DataFrame(data,\n",
" index=dates, columns=['A', 'B', 'C'])\n",
"df.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## How to do it\n",
"\n",
"### Using vectorized operations\n",
"\n",
"1. Create a new column as a function of an existing column"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"df['Squared_A'] = df['A']**2"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"df['CosA'] = np.cos(df['A'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"2. Create a new column as a function of two or more existing columns using vectorized operation such as product and sum"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" A | \n",
" B | \n",
" C | \n",
" Squared_A | \n",
" CosA | \n",
" Sum_AB | \n",
" Prod_AB | \n",
"
\n",
" \n",
" \n",
" \n",
" 2020-01-01 | \n",
" 0.683402 | \n",
" -0.530933 | \n",
" 2.211594 | \n",
" 0.467038 | \n",
" 0.775429 | \n",
" 0.152469 | \n",
" -0.362841 | \n",
"
\n",
" \n",
" 2020-01-02 | \n",
" 0.492285 | \n",
" 0.422495 | \n",
" 0.047873 | \n",
" 0.242344 | \n",
" 0.881255 | \n",
" 0.914779 | \n",
" 0.207988 | \n",
"
\n",
" \n",
" 2020-01-03 | \n",
" -0.287670 | \n",
" -1.712541 | \n",
" 0.665600 | \n",
" 0.082754 | \n",
" 0.958908 | \n",
" -2.000210 | \n",
" 0.492646 | \n",
"
\n",
" \n",
" 2020-01-04 | \n",
" -1.206087 | \n",
" -0.479746 | \n",
" 0.112255 | \n",
" 1.454645 | \n",
" 0.356678 | \n",
" -1.685832 | \n",
" 0.578615 | \n",
"
\n",
" \n",
" 2020-01-05 | \n",
" 0.384278 | \n",
" 0.314534 | \n",
" -1.529952 | \n",
" 0.147669 | \n",
" 0.927070 | \n",
" 0.698811 | \n",
" 0.120868 | \n",
"
\n",
" \n",
" 2020-01-06 | \n",
" 1.064657 | \n",
" 0.591428 | \n",
" 0.250544 | \n",
" 1.133494 | \n",
" 0.484805 | \n",
" 1.656085 | \n",
" 0.629668 | \n",
"
\n",
" \n",
" 2020-01-07 | \n",
" -0.459051 | \n",
" -0.287355 | \n",
" 1.971743 | \n",
" 0.210728 | \n",
" 0.896473 | \n",
" -0.746406 | \n",
" 0.131911 | \n",
"
\n",
" \n",
" 2020-01-08 | \n",
" 0.992138 | \n",
" -0.512499 | \n",
" 0.711691 | \n",
" 0.984338 | \n",
" 0.546901 | \n",
" 0.479639 | \n",
" -0.508470 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" A B C Squared_A CosA Sum_AB \\\n",
"2020-01-01 0.683402 -0.530933 2.211594 0.467038 0.775429 0.152469 \n",
"2020-01-02 0.492285 0.422495 0.047873 0.242344 0.881255 0.914779 \n",
"2020-01-03 -0.287670 -1.712541 0.665600 0.082754 0.958908 -2.000210 \n",
"2020-01-04 -1.206087 -0.479746 0.112255 1.454645 0.356678 -1.685832 \n",
"2020-01-05 0.384278 0.314534 -1.529952 0.147669 0.927070 0.698811 \n",
"2020-01-06 1.064657 0.591428 0.250544 1.133494 0.484805 1.656085 \n",
"2020-01-07 -0.459051 -0.287355 1.971743 0.210728 0.896473 -0.746406 \n",
"2020-01-08 0.992138 -0.512499 0.711691 0.984338 0.546901 0.479639 \n",
"\n",
" Prod_AB \n",
"2020-01-01 -0.362841 \n",
"2020-01-02 0.207988 \n",
"2020-01-03 0.492646 \n",
"2020-01-04 0.578615 \n",
"2020-01-05 0.120868 \n",
"2020-01-06 0.629668 \n",
"2020-01-07 0.131911 \n",
"2020-01-08 -0.508470 "
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df['Sum_AB'] = df['A'] + df['B']\n",
"df['Prod_AB'] = df['A'] * df['B']\n",
"df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"### Using `apply`\n",
"\n",
"\n",
"3. Create a new column evaluating an ad-hoc function on existing columns. To do this we need to \n",
"\n",
"- Define the function that we want to evaluate\n",
"- Use the method `apply` combined with a `lambda` expression"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" A | \n",
" B | \n",
" C | \n",
" Squared_A | \n",
" CosA | \n",
" Sum_AB | \n",
" Prod_AB | \n",
" function_ABC | \n",
"
\n",
" \n",
" \n",
" \n",
" 2020-01-01 | \n",
" 0.683402 | \n",
" -0.530933 | \n",
" 2.211594 | \n",
" 0.467038 | \n",
" 0.775429 | \n",
" 0.152469 | \n",
" -0.362841 | \n",
" 1.039929 | \n",
"
\n",
" \n",
" 2020-01-02 | \n",
" 0.492285 | \n",
" 0.422495 | \n",
" 0.047873 | \n",
" 0.242344 | \n",
" 0.881255 | \n",
" 0.914779 | \n",
" 0.207988 | \n",
" 2.792179 | \n",
"
\n",
" \n",
" 2020-01-03 | \n",
" -0.287670 | \n",
" -1.712541 | \n",
" 0.665600 | \n",
" 0.082754 | \n",
" 0.958908 | \n",
" -2.000210 | \n",
" 0.492646 | \n",
" 1.604184 | \n",
"
\n",
" \n",
" 2020-01-04 | \n",
" -1.206087 | \n",
" -0.479746 | \n",
" 0.112255 | \n",
" 1.454645 | \n",
" 0.356678 | \n",
" -1.685832 | \n",
" 0.578615 | \n",
" 2.237496 | \n",
"
\n",
" \n",
" 2020-01-05 | \n",
" 0.384278 | \n",
" 0.314534 | \n",
" -1.529952 | \n",
" 0.147669 | \n",
" 0.927070 | \n",
" 0.698811 | \n",
" 0.120868 | \n",
" 1.918843 | \n",
"
\n",
" \n",
" 2020-01-06 | \n",
" 1.064657 | \n",
" 0.591428 | \n",
" 0.250544 | \n",
" 1.133494 | \n",
" 0.484805 | \n",
" 1.656085 | \n",
" 0.629668 | \n",
" 2.283728 | \n",
"
\n",
" \n",
" 2020-01-07 | \n",
" -0.459051 | \n",
" -0.287355 | \n",
" 1.971743 | \n",
" 0.210728 | \n",
" 0.896473 | \n",
" -0.746406 | \n",
" 0.131911 | \n",
" 1.465180 | \n",
"
\n",
" \n",
" 2020-01-08 | \n",
" 0.992138 | \n",
" -0.512499 | \n",
" 0.711691 | \n",
" 0.984338 | \n",
" 0.546901 | \n",
" 0.479639 | \n",
" -0.508470 | \n",
" 2.175681 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" A B C Squared_A CosA Sum_AB \\\n",
"2020-01-01 0.683402 -0.530933 2.211594 0.467038 0.775429 0.152469 \n",
"2020-01-02 0.492285 0.422495 0.047873 0.242344 0.881255 0.914779 \n",
"2020-01-03 -0.287670 -1.712541 0.665600 0.082754 0.958908 -2.000210 \n",
"2020-01-04 -1.206087 -0.479746 0.112255 1.454645 0.356678 -1.685832 \n",
"2020-01-05 0.384278 0.314534 -1.529952 0.147669 0.927070 0.698811 \n",
"2020-01-06 1.064657 0.591428 0.250544 1.133494 0.484805 1.656085 \n",
"2020-01-07 -0.459051 -0.287355 1.971743 0.210728 0.896473 -0.746406 \n",
"2020-01-08 0.992138 -0.512499 0.711691 0.984338 0.546901 0.479639 \n",
"\n",
" Prod_AB function_ABC \n",
"2020-01-01 -0.362841 1.039929 \n",
"2020-01-02 0.207988 2.792179 \n",
"2020-01-03 0.492646 1.604184 \n",
"2020-01-04 0.578615 2.237496 \n",
"2020-01-05 0.120868 1.918843 \n",
"2020-01-06 0.629668 2.283728 \n",
"2020-01-07 0.131911 1.465180 \n",
"2020-01-08 -0.508470 2.175681 "
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from math import sin, cos\n",
"\n",
"def my_function(x, y, z):\n",
" if x + y >3:\n",
" return sin(x) + sin(y) + sin(z)\n",
" else:\n",
" return cos(x) + cos(y) + cos(z)\n",
"\n",
"\n",
"df['function_ABC'] = df.apply(lambda x: my_function(x['A'], x['B'], x['C']), axis=1)\n",
"df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"4. Create a column which maps the values of a column to a set of colors depending on some boundaries. \n",
"For example, we are going to map column `C` as follows:\n",
"\n",
"- 'black' for values < -3\n",
"- 'yellow' for values in [-3, 3]\n",
"- 'green' for values >3\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" A | \n",
" B | \n",
" C | \n",
" Squared_A | \n",
" Sum_AB | \n",
" Prod_AB | \n",
" function_ABC | \n",
" color | \n",
"
\n",
" \n",
" \n",
" \n",
" 2020-01-01 | \n",
" 0.708974 | \n",
" 1.653839 | \n",
" 0.460311 | \n",
" 0.502644 | \n",
" 2.362813 | \n",
" 1.172529 | \n",
" 2.091836 | \n",
" yellow | \n",
"
\n",
" \n",
" 2020-01-02 | \n",
" -0.244630 | \n",
" 0.063613 | \n",
" 0.309403 | \n",
" 0.059844 | \n",
" -0.181016 | \n",
" -0.015562 | \n",
" 0.125863 | \n",
" yellow | \n",
"
\n",
" \n",
" 2020-01-03 | \n",
" 0.323868 | \n",
" 0.438768 | \n",
" 0.570030 | \n",
" 0.104891 | \n",
" 0.762637 | \n",
" 0.142103 | \n",
" 1.282718 | \n",
" yellow | \n",
"
\n",
" \n",
" 2020-01-04 | \n",
" -0.440328 | \n",
" -0.276695 | \n",
" 1.078906 | \n",
" 0.193889 | \n",
" -0.717024 | \n",
" 0.121837 | \n",
" 0.182027 | \n",
" yellow | \n",
"
\n",
" \n",
" 2020-01-05 | \n",
" 0.504205 | \n",
" 0.600484 | \n",
" 1.312837 | \n",
" 0.254223 | \n",
" 1.104689 | \n",
" 0.302767 | \n",
" 2.015066 | \n",
" yellow | \n",
"
\n",
" \n",
" 2020-01-06 | \n",
" -1.148653 | \n",
" 1.119476 | \n",
" 1.374591 | \n",
" 1.319403 | \n",
" -0.029177 | \n",
" -1.285889 | \n",
" 0.968473 | \n",
" yellow | \n",
"
\n",
" \n",
" 2020-01-07 | \n",
" -1.795673 | \n",
" -1.071452 | \n",
" 0.695752 | \n",
" 3.224442 | \n",
" -2.867125 | \n",
" 1.923978 | \n",
" -1.211755 | \n",
" yellow | \n",
"
\n",
" \n",
" 2020-01-08 | \n",
" -1.455186 | \n",
" -0.705272 | \n",
" -0.082883 | \n",
" 2.117567 | \n",
" -2.160459 | \n",
" 1.026303 | \n",
" -1.724354 | \n",
" yellow | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" A B C Squared_A Sum_AB Prod_AB \\\n",
"2020-01-01 0.708974 1.653839 0.460311 0.502644 2.362813 1.172529 \n",
"2020-01-02 -0.244630 0.063613 0.309403 0.059844 -0.181016 -0.015562 \n",
"2020-01-03 0.323868 0.438768 0.570030 0.104891 0.762637 0.142103 \n",
"2020-01-04 -0.440328 -0.276695 1.078906 0.193889 -0.717024 0.121837 \n",
"2020-01-05 0.504205 0.600484 1.312837 0.254223 1.104689 0.302767 \n",
"2020-01-06 -1.148653 1.119476 1.374591 1.319403 -0.029177 -1.285889 \n",
"2020-01-07 -1.795673 -1.071452 0.695752 3.224442 -2.867125 1.923978 \n",
"2020-01-08 -1.455186 -0.705272 -0.082883 2.117567 -2.160459 1.026303 \n",
"\n",
" function_ABC color \n",
"2020-01-01 2.091836 yellow \n",
"2020-01-02 0.125863 yellow \n",
"2020-01-03 1.282718 yellow \n",
"2020-01-04 0.182027 yellow \n",
"2020-01-05 2.015066 yellow \n",
"2020-01-06 0.968473 yellow \n",
"2020-01-07 -1.211755 yellow \n",
"2020-01-08 -1.724354 yellow "
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def color_function(x):\n",
" if x < -3:\n",
" return 'black'\n",
" elif x > 3:\n",
" return 'green'\n",
" else: \n",
" return 'yellow'\n",
"\n",
"\n",
"df['color'] = df.apply(lambda x: color_function(x['C']), axis=1)\n",
"df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Using conditions"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"5. Create a column using a condition. For example, checking of the value of a column is positive or negative."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" A | \n",
" B | \n",
" C | \n",
" Squared_A | \n",
" Sum_AB | \n",
" Prod_AB | \n",
" function_ABC | \n",
" color | \n",
" Flag | \n",
"
\n",
" \n",
" \n",
" \n",
" 2020-01-01 | \n",
" 0.708974 | \n",
" 1.653839 | \n",
" 0.460311 | \n",
" 0.502644 | \n",
" 2.362813 | \n",
" 1.172529 | \n",
" 2.091836 | \n",
" yellow | \n",
" True | \n",
"
\n",
" \n",
" 2020-01-02 | \n",
" -0.244630 | \n",
" 0.063613 | \n",
" 0.309403 | \n",
" 0.059844 | \n",
" -0.181016 | \n",
" -0.015562 | \n",
" 0.125863 | \n",
" yellow | \n",
" False | \n",
"
\n",
" \n",
" 2020-01-03 | \n",
" 0.323868 | \n",
" 0.438768 | \n",
" 0.570030 | \n",
" 0.104891 | \n",
" 0.762637 | \n",
" 0.142103 | \n",
" 1.282718 | \n",
" yellow | \n",
" True | \n",
"
\n",
" \n",
" 2020-01-04 | \n",
" -0.440328 | \n",
" -0.276695 | \n",
" 1.078906 | \n",
" 0.193889 | \n",
" -0.717024 | \n",
" 0.121837 | \n",
" 0.182027 | \n",
" yellow | \n",
" False | \n",
"
\n",
" \n",
" 2020-01-05 | \n",
" 0.504205 | \n",
" 0.600484 | \n",
" 1.312837 | \n",
" 0.254223 | \n",
" 1.104689 | \n",
" 0.302767 | \n",
" 2.015066 | \n",
" yellow | \n",
" True | \n",
"
\n",
" \n",
" 2020-01-06 | \n",
" -1.148653 | \n",
" 1.119476 | \n",
" 1.374591 | \n",
" 1.319403 | \n",
" -0.029177 | \n",
" -1.285889 | \n",
" 0.968473 | \n",
" yellow | \n",
" False | \n",
"
\n",
" \n",
" 2020-01-07 | \n",
" -1.795673 | \n",
" -1.071452 | \n",
" 0.695752 | \n",
" 3.224442 | \n",
" -2.867125 | \n",
" 1.923978 | \n",
" -1.211755 | \n",
" yellow | \n",
" False | \n",
"
\n",
" \n",
" 2020-01-08 | \n",
" -1.455186 | \n",
" -0.705272 | \n",
" -0.082883 | \n",
" 2.117567 | \n",
" -2.160459 | \n",
" 1.026303 | \n",
" -1.724354 | \n",
" yellow | \n",
" False | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" A B C Squared_A Sum_AB Prod_AB \\\n",
"2020-01-01 0.708974 1.653839 0.460311 0.502644 2.362813 1.172529 \n",
"2020-01-02 -0.244630 0.063613 0.309403 0.059844 -0.181016 -0.015562 \n",
"2020-01-03 0.323868 0.438768 0.570030 0.104891 0.762637 0.142103 \n",
"2020-01-04 -0.440328 -0.276695 1.078906 0.193889 -0.717024 0.121837 \n",
"2020-01-05 0.504205 0.600484 1.312837 0.254223 1.104689 0.302767 \n",
"2020-01-06 -1.148653 1.119476 1.374591 1.319403 -0.029177 -1.285889 \n",
"2020-01-07 -1.795673 -1.071452 0.695752 3.224442 -2.867125 1.923978 \n",
"2020-01-08 -1.455186 -0.705272 -0.082883 2.117567 -2.160459 1.026303 \n",
"\n",
" function_ABC color Flag \n",
"2020-01-01 2.091836 yellow True \n",
"2020-01-02 0.125863 yellow False \n",
"2020-01-03 1.282718 yellow True \n",
"2020-01-04 0.182027 yellow False \n",
"2020-01-05 2.015066 yellow True \n",
"2020-01-06 0.968473 yellow False \n",
"2020-01-07 -1.211755 yellow False \n",
"2020-01-08 -1.724354 yellow False "
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df['Flag'] = df['A'] >= 0 \n",
"df "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Using `map`"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"6. Map a column with boolean values to color names in string format. For example, map `True` to color 'green' and `False` to color 'red'."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" A | \n",
" B | \n",
" C | \n",
" Squared_A | \n",
" Sum_AB | \n",
" Prod_AB | \n",
" function_ABC | \n",
" color | \n",
" Flag | \n",
" Flag_to_Colors | \n",
"
\n",
" \n",
" \n",
" \n",
" 2020-01-01 | \n",
" 0.708974 | \n",
" 1.653839 | \n",
" 0.460311 | \n",
" 0.502644 | \n",
" 2.362813 | \n",
" 1.172529 | \n",
" 2.091836 | \n",
" yellow | \n",
" True | \n",
" green | \n",
"
\n",
" \n",
" 2020-01-02 | \n",
" -0.244630 | \n",
" 0.063613 | \n",
" 0.309403 | \n",
" 0.059844 | \n",
" -0.181016 | \n",
" -0.015562 | \n",
" 0.125863 | \n",
" yellow | \n",
" False | \n",
" red | \n",
"
\n",
" \n",
" 2020-01-03 | \n",
" 0.323868 | \n",
" 0.438768 | \n",
" 0.570030 | \n",
" 0.104891 | \n",
" 0.762637 | \n",
" 0.142103 | \n",
" 1.282718 | \n",
" yellow | \n",
" True | \n",
" green | \n",
"
\n",
" \n",
" 2020-01-04 | \n",
" -0.440328 | \n",
" -0.276695 | \n",
" 1.078906 | \n",
" 0.193889 | \n",
" -0.717024 | \n",
" 0.121837 | \n",
" 0.182027 | \n",
" yellow | \n",
" False | \n",
" red | \n",
"
\n",
" \n",
" 2020-01-05 | \n",
" 0.504205 | \n",
" 0.600484 | \n",
" 1.312837 | \n",
" 0.254223 | \n",
" 1.104689 | \n",
" 0.302767 | \n",
" 2.015066 | \n",
" yellow | \n",
" True | \n",
" green | \n",
"
\n",
" \n",
" 2020-01-06 | \n",
" -1.148653 | \n",
" 1.119476 | \n",
" 1.374591 | \n",
" 1.319403 | \n",
" -0.029177 | \n",
" -1.285889 | \n",
" 0.968473 | \n",
" yellow | \n",
" False | \n",
" red | \n",
"
\n",
" \n",
" 2020-01-07 | \n",
" -1.795673 | \n",
" -1.071452 | \n",
" 0.695752 | \n",
" 3.224442 | \n",
" -2.867125 | \n",
" 1.923978 | \n",
" -1.211755 | \n",
" yellow | \n",
" False | \n",
" red | \n",
"
\n",
" \n",
" 2020-01-08 | \n",
" -1.455186 | \n",
" -0.705272 | \n",
" -0.082883 | \n",
" 2.117567 | \n",
" -2.160459 | \n",
" 1.026303 | \n",
" -1.724354 | \n",
" yellow | \n",
" False | \n",
" red | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" A B C Squared_A Sum_AB Prod_AB \\\n",
"2020-01-01 0.708974 1.653839 0.460311 0.502644 2.362813 1.172529 \n",
"2020-01-02 -0.244630 0.063613 0.309403 0.059844 -0.181016 -0.015562 \n",
"2020-01-03 0.323868 0.438768 0.570030 0.104891 0.762637 0.142103 \n",
"2020-01-04 -0.440328 -0.276695 1.078906 0.193889 -0.717024 0.121837 \n",
"2020-01-05 0.504205 0.600484 1.312837 0.254223 1.104689 0.302767 \n",
"2020-01-06 -1.148653 1.119476 1.374591 1.319403 -0.029177 -1.285889 \n",
"2020-01-07 -1.795673 -1.071452 0.695752 3.224442 -2.867125 1.923978 \n",
"2020-01-08 -1.455186 -0.705272 -0.082883 2.117567 -2.160459 1.026303 \n",
"\n",
" function_ABC color Flag Flag_to_Colors \n",
"2020-01-01 2.091836 yellow True green \n",
"2020-01-02 0.125863 yellow False red \n",
"2020-01-03 1.282718 yellow True green \n",
"2020-01-04 0.182027 yellow False red \n",
"2020-01-05 2.015066 yellow True green \n",
"2020-01-06 0.968473 yellow False red \n",
"2020-01-07 -1.211755 yellow False red \n",
"2020-01-08 -1.724354 yellow False red "
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df['Flag_to_Colors'] = df['Flag'].map({True:'green', False:'red'}) \n",
"df"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}