8. Loading the Plotly Express Data Sets#
Plotly express comes with several data sets pre-loaded which we can use for testing and exploration purposes. In this recipe we will learn to load such data sets.
Getting ready#
Import the
plotly
module and cerify that your version is 4.14 (this is when the data sets were included for the first time) or newer
import plotly
plotly.__version__
'6.0.0'
How to do it#
Import the
plotly.express.data
submodule asdatasets
import plotly.express.data as datasets
Print the names of the data sets available
for name in dir(datasets):
if '__' not in name:
print(name)
AVAILABLE_BACKENDS
BACKENDS_WITH_INDEX_SUPPORT
carshare
election
election_geojson
experiment
gapminder
import_module
iris
medals_long
medals_wide
nw
os
stocks
tips
wind
Import one of the available data sets and check its type using the function
type
data = datasets.stocks()
type(data)
pandas.core.frame.DataFrame
It is a pandas DataFrame
!
Use the method
head
to inspect the data
data.head()
date | GOOG | AAPL | AMZN | FB | NFLX | MSFT | |
---|---|---|---|---|---|---|---|
0 | 2018-01-01 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | 2018-01-08 | 1.018172 | 1.011943 | 1.061881 | 0.959968 | 1.053526 | 1.015988 |
2 | 2018-01-15 | 1.032008 | 1.019771 | 1.053240 | 0.970243 | 1.049860 | 1.020524 |
3 | 2018-01-22 | 1.066783 | 0.980057 | 1.140676 | 1.016858 | 1.307681 | 1.066561 |
4 | 2018-01-29 | 1.008773 | 0.917143 | 1.163374 | 1.018357 | 1.273537 | 1.040708 |
Notice that the head
method receives an argument n
(which defaults to 5) which represents the number of rows of the DataFrame
to be show. Let’s display the first 10 rows by calling head(10)
data.head(10)
date | GOOG | AAPL | AMZN | FB | NFLX | MSFT | |
---|---|---|---|---|---|---|---|
0 | 2018-01-01 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | 2018-01-08 | 1.018172 | 1.011943 | 1.061881 | 0.959968 | 1.053526 | 1.015988 |
2 | 2018-01-15 | 1.032008 | 1.019771 | 1.053240 | 0.970243 | 1.049860 | 1.020524 |
3 | 2018-01-22 | 1.066783 | 0.980057 | 1.140676 | 1.016858 | 1.307681 | 1.066561 |
4 | 2018-01-29 | 1.008773 | 0.917143 | 1.163374 | 1.018357 | 1.273537 | 1.040708 |
5 | 2018-02-05 | 0.941528 | 0.893771 | 1.089868 | 0.942521 | 1.188009 | 0.999887 |
6 | 2018-02-12 | 0.993259 | 0.985314 | 1.178621 | 0.949211 | 1.326349 | 1.043202 |
7 | 2018-02-19 | 1.022282 | 1.002857 | 1.220365 | 0.980947 | 1.361636 | 1.066561 |
8 | 2018-02-26 | 0.978852 | 1.006914 | 1.220569 | 0.945250 | 1.433640 | 1.055108 |
9 | 2018-03-05 | 1.052448 | 1.028457 | 1.284549 | 0.991330 | 1.578361 | 1.094682 |