Ornstein-Uhlenbeck Process

Ornstein-Uhlenbeck Process#

  • Ornstein–Uhlenbeck process $X(\theta=1.0, \sigma=0.5)$ on $[0,1.0]$, Simulated Paths $X_t, t \in [t_0, T]$, $X_T$
  • Ornstein–Uhlenbeck process $X(\theta=1.0, \sigma=1.0)$ on $[0,2.0]$, Simulated Paths $X_t, t \in [t_0, T]$, $X_T$
# Author: Dialid Santiago <d.santiago@outlook.com>
# License: MIT
# Description: Advent Calendar 2025 - Plot Geometric Ornstein-Uhlenbeck Process


from aleatory.processes import OUProcess
from aleatory.styles import qp_style

qp_style()  # Use quant-pastel-style

p = OUProcess()
fig = p.draw(n=200, N=200, figsize=(12, 7), colormap="twilight")
fig.show()



p = OUProcess(theta=1.0, sigma=1.0, initial=0.0, T=2.0)
fig = p.draw(n=200, N=200, figsize=(12, 7), colormap="Blues")
fig.show()

Total running time of the script: (0 minutes 1.913 seconds)

Gallery generated by Sphinx-Gallery